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Abstract. Actuator cylinder theory is an effective approach for analyzing the aerodynamic performance of vertical axis wind

turbines at a conceptual design level. Existing actuator cylinder theory can analyze single turbines, but analysis of multiple

turbines is often desirable because turbines operate in near proximity within a wind farm. For vertical axis wind turbines, which

tend to operate in closer proximity than do horizontal axis turbines, aerodynamic interactions may not be strictly confined to

wake interactions. We modified actuator cylinder theory to permit the simultaneous solution of aerodynamic loading for any5

number of turbines. We also extended the theory to handle thrust coefficients outside of the momentum region, and explicitly

defined the additional terms needed for curved or swept blades.

It is found that even out of the wake zone, aerodynamic interactions are not negligible at typical separation distances (i.e.,

3–6 rotor diameters). If turbines are co-rotating then for the two turbine cases examined in this paper the sum of the total power

was effectively constant except within the wake zone. However, if turbines counter-rotate then both beneficial and detrimental10

changes in power production were observed depending on the relative positions. However, these benefits are on the order of

a few percent and unlikely to be advantageous in practice because of wake interference, except for within highly directional

wind sites. Limitations of these analyses identified the need for integration with viscous wake models, and potentially with

higher-fidelity induced velocity models.

1 Introduction15

Blade element momentum theory combines momentum theory across an actuator disk with blade element theory to predict

the aerodynamic loading of horizontal axis wind turbines. This theory has been very successful and is heavily used in many

analysis and design applications (Hansen, 2008; Manwell et al., 2009; Burton et al., 2011; Ning, 2014). Its primary advantage

is computational speed while still providing reasonably accurate performance predictions.

Streamtube theory attempts to apply the same concept to vertical axis wind turbine (VAWT) aerodynamic performance es-20

timation (Templin, 1974). Each cross-section of the VAWT (constant height) is approximated as an actuator disk through the

mid-plane, which results in a cross-plane actuator line in the 2D plane. However, this model is a rather poor representation of a

VAWT as it requires constant flow parameters across the entire disk. An extension of this theory is multiple streamtube theory,

where, instead of using one large streamtube passing through the VAWT, the VAWT cross-section is discretized into multiple

streamtubes each with an independent induction factor (Wilson and Lissaman, 1974; Strickland, 1975). An additional exten-25

sion, double multiple streamtube theory (Paraschivoiu, 1981; Paraschivoiu and Delclaux, 1983; Paraschivoiu, 1988), utilizes
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two actuator disks to represent the upstream and downstream sides of the cylinder (Fig. 1). In this model momentum losses

can occur on both the upwind and downwind faces. Double multiple streamtube theory has been widely used for aerodynamic

analysis of VAWTs.

V V 0

V1

Figure 1. Double multiple streamtube concept with multiple streamtubes along the VAWT (one shown) and separate “actuator disks” on both

the upstream and downstream surfaces.

While double multiple streamtube theory is a useful improvement over single streamtube models, it is clearly a forced

application of the actuator disk concept to a VAWT. A more physically consistent theory for VAWTs, called actuator cylinder5

theory, was developed by Madsen (Madsen, 1982; Madsen et al., 2013). Actuator cylinder theory has been shown to be more

accurate than double multiple streamtube theory (Ferreira et al., 2014), while still retaining comparable computational speed.

One limitation of actuator cylinder theory is that it is derived only for a single isolated turbine. We are interested in per-

formance of VAWT farms, and thus need to predict performance of multiple VAWTs in proximity to each other. This paper

extends the methodology for use with any number of VAWTs, extends applicability to turbines not operating in the momentum10

region, and adds computation details for blades that are curved or swept. The primary purpose of this paper is to derive the new

methodology, but some example trade studies of VAWT pairs are also discussed.

2 Theory Development

The actuator cylinder theory begins with the assumption that a vertical slice of a VAWT can be modeled as a two-dimensional

problem. Figure 2 shows a 2D representation of the VAWT, with only one of the blades shown for simplicity, and defines the15

coordinate system used in this derivation. The VAWT produces a varying normalized radial force per unit length q(✓) as a

function of azimuthal position along the VAWT. We define the positive direction for this force q as positive radial outward (and

thus positive radially inward for the loads the fluid produces on the VAWT). Using the two-dimensional, steady, incompressible,
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Figure 2. A canonical 2D slice of a VAWT (only one blade shown) and the coordinate system used.

Euler equations, and (for the moment) neglecting nonlinear terms, the induced velocities at any location in the plane can be

shown to be given by the following integrals (Madsen et al., 2013; Madsen, 1982):

u(x,y) =
1
2⇡

2⇡Z

0

q(✓)
[x + sin✓] sin✓� [y� cos✓] cos✓

[x + sin✓]2 + [y� cos✓]2
d✓

� q(cos�1 y) {inside and wake}

+ q(�cos�1 y) {wake only}

v(x,y) =
1
2⇡

2⇡Z

0

q(✓)
[x + sin✓] cos✓ + [y� cos✓] sin✓

[x + sin✓]2 + [y� cos✓]2
d✓

(1)

where the x,y position is measured from the center of a unit radius turbine, and velocities are normalized by the freestream

velocity. For evaluation points inside the cylinder the {inside and wake} term applies, and for evaluation points downstream5

of the cylinder both the {inside and wake} and {wake only} terms apply. These two terms are based on an integration path

through the cylinder, where ✓ = cos�1 y (Figure 3). For brevity, the derivation of the above equations are omitted, but details

are available in the above cited papers from Madsen.

These two equations for the induced velocities (Eq. (1)) are applicable for any x,y location, however we are primarily

interested in the induced velocities only at locations on the current turbine and on other turbines. To facilitate computation we10

discretize the description of each actuator cylinder into n panels centered at the azimuthal locations:

✓i = (2i� 1)
⇡

n
for i = 1 . . .n

�✓ =
2⇡

n

(2)

Furthermore, as is done in the original version, we assume piecewise constant loading across each panel. These locations are

the points of interest where will compute the radial forces and subsequently the induced velocities.
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✓y

integration path

Figure 3. Integration path for a point inside the cylinder.

In general, we need to compute the induced velocity at every location on a given VAWT using contributions from all VAWTs

(including itself). In the following derivation we adopt the notation that index I is the turbine we are evaluating the velocities at,

and index i represents the azimuthal location on turbine I where we are evaluating. Index J will refer to the turbine producing

the induced velocity, and index j will indicate the azimuthal location on turbine J where the load is producing the induced

velocity (Fig. 4).5

I

J

i

j

ui

vi

qj

✓j

Figure 4. Influence of load at location j of turbine J onto location i of turbine I

Using the azimuthal discretization, the induced velocities at a point (x,y) are expressed as a sum of integrals over individual

panels. Recall that Eq. (1) is normalized based on the current VAWT radius and the freestream velocity. Because we are now

considering multiple VAWTs with potentially different radii, we need to be more explicit in defining the normalized quantities.

4
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The generalized definitions of the x,y evaluation positions are:

x⇤i = (xi�xJc)/rJ

y⇤i = (yi� yJc)/rJ

(3)

where xJc is the x location of the center of turbine J . If I = J (i.e., we are evaluating the turbine’s influence on itself), then

this definition is identical to the single turbine case where the x and y locations are then distances from the VAWT center

normalized by its radius. The velocity used in normalizing the induced velocities and the radial loading must be the same,5

and for that purpose we continue to use the freestream velocity. We introduce the star superscript on the induced velocities

for clarity (e.g., u⇤ = u/V1). The expressions for induced velocity at the cylinder surface depend on whether we evaluate just

upstream of the actuator disk or just downstream. The end result is the same, as long as we are consistent. In the following

derivation we evaluate on the upstream surfaces for both halves of the actuator disk.

u⇤i =
1
2⇡

X

j

qj

✓j+�✓/2Z

✓j��✓/2

(x⇤i + sin�)sin�� (y⇤i � cos�)cos�

(x⇤i + sin�)2 + (y⇤i � cos�)2
d�

� qn+1�i {I = J, i > n/2}

� qJk + qJn+1�k {I 6= J, �1 y⇤i  1, x⇤i � 1}

( where index k satisfies ✓Jk = cos�1 y⇤i )

v⇤i =
1
2⇡

X

j

qj

✓j+�✓/2Z

✓j��✓/2

(x⇤i + sin�)cos� + (y⇤i � cos�)sin�

(x⇤i + sin�)2 + (y⇤i � cos�)2
d�

(4)10

In these integrals we have replaced ✓ in the integration with the dummy variable � in order to avoid confusion with the ✓

terms appearing in the integration limits. The term�qn+1�i arises when evaluating the influence of a turbine on itself. Because

we chose to evaluate on the upstream surfaces, the upstream half of the VAWT is considered outside of the VAWT, but the aft

half is in the inside of the cylinder. This implies that for the aft half (i.e., i > n/2) the �q(cos�1 y) term must be added. This

corresponds to the loading on the front half of the turbine with the same y value. Based on our discretization, its location can15

be indexed directly as �qn+1�i.

The following two terms for u arise when turbine I is in the wake of turbine J . Actuator cylinder theory only includes the

wake term when an evaluation point is directly downwind from a source point (e.g., the blue region in Fig. 5). The condition

corresponds to x⇤i � 1 and �1 y⇤i  1 and x⇤i
2 +y⇤i

2 � 1. For this wake area, both of the terms in Eq. (1) are applicable. The

index k corresponds to the location where ✓Jk = cos�1 y⇤i . Note that cos�1 y⇤i will likely not line up exactly with an existing20

grid point ✓k on turbine J , but we have assumed piecewise constant loading across a given panel, so k will correspond to the

panel that is intersected.

This model is based on integration paths like those shown in Fig. 3 and thus ignores the effect of wake expansion and viscous

decay. An alternative is to ignore the wake terms and instead apply a momentum deficit factor from some other VAWT wake

5
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model. Because the focus on this paper is on actuator cylinder theory we will use the simple wake model that naturally arises

within the theory itself, but this methodology provides a convenient hook to insert any wake model.

J

Figure 5. Wake region from actuator cylinder theory highlighted in blue (and extending downstream).

For convenience in the computation, Eq. (4) can be expressed as a matrix vector multiplication where the loading q is

separated from the influence coefficients.

u⇤I = AxIJqJ

v⇤I = AyIJqJ

(5)5

The matrix AyIJ is given by:

AyIJ(i, j) =
1
2⇡

✓j+�✓/2Z

✓j��✓/2

(x⇤i + sin�)cos� + (y⇤i � cos�)sin�

(x⇤i + sin�)2 + (y⇤i � cos�)2
d� (6)

For the AxIJ matrix we divide the contributions between the direct influence and the wake influence: AxIJ = DxIJ + WxIJ

where

DxIJ(i, j) =
1
2⇡

✓j+�✓/2Z

✓j��✓/2

(x⇤i + sin�)sin�� (y⇤i � cos�)cos�

(x⇤i + sin�)2 + (y⇤i � cos�)2
d� (7)10

WxIJ(i, j) =

8
>>>>>>>>>><
>>>>>>>>>>:

�1 if � 1 y⇤i  1 and x⇤i � 0

and x⇤i
2 + y⇤i

2 � 1 and j = k

1 if � 1 y⇤i  1 and x⇤i � 0

and x⇤i
2 + y⇤i

2 � 1 and j = n� k + 1

0 otherwise

(8)

where index k corresponds to the panel where ✓Jk = cos�1 y⇤i .

If we are evaluating the influence of a turbine on itself (e.g., I = J) then the computations in the Ax matrix can be simplified.

We can expand using the definitions for x and y along the cylinder (x⇤i =�sin✓i and y⇤i = cos✓i for i = 1 . . .n). As long as15

i 6= j, then the integral in Eq. (7) evaluates to �✓/2. When i = j the value of the integral depends on which side of the cylinder

we evaluate on. It converges to ⇡(�1 + 1/n) just outside of the cylinder and ⇡(1 + 1/n) just inside. Because we chose to

6
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evaluate on the upstream surface on both halves of the cylinder then the integral evaluates to ⇡(�1+1/n) on the upstream half

of the cylinder and ⇡(1 + 1/n) on the downstream half of the cylinder.

DxII(i, j) =

8
>>>><
>>>>:

�✓/(4⇡) if i 6= j

(�1 + 1/n)/2 if i = j and i n/2

(1 + 1/n)/2 if i = j and i > n/2

(9)

WxII(i, j) =

8
><
>:
�1 if i > n/2 and j = n + 1� i

0 otherwise
(10)5

If a user elects to use a more sophisticated wake model the Wx term can simply be ignored and a separate momentum deficit

factor can be applied.

2.1 Faster Computation

The bulk of the computational effort is contained in computing the influence coefficient matrices AxIJ and AyIJ . These

computations consist of a double loop iterating across all evaluation positions i on turbine I for each source position j on10

turbine J (which is itself contained in a double loop across all turbines I and J). Fortunately, some of this computation can

be simplified. The expressions in Eqs. (6), (9) and (10) apply for the cases where I = J , or in other words for computing the

influence of the turbine on itself. A significant benefit to this equation form, is that the matrices depend only on the discretization

of the cylinder, and not on the details of the blade shape or loading. For a preselected number of azimuthal segments (e.g.,

n = 36), these matrices can be precomputed and stored. This is true no matter what size radius the VAWT is.15

If I 6= J some reduction in computational requirements is also possible. For each VAWT pair (I 6= J), if the two VAWTs

are of equal radius, then pairs of influence coefficients between them are exactly the same. As seen in Fig. 6, the distance

vector from the center of one turbine to the evaluation point on a separate turbine, is exactly equal and opposite to a vector

originating from the center of the other turbine and terminating at an azimuthal location diametrically opposite to the first

evaluation point’s azimuthal location. As long as these two VAWTs are of equal radius, then these two vectors will always be20

equal and opposite. This corresponds to x⇤ and y⇤ switching signs in Eqs. (6) and (7). However, the evaluation locations are

always 180� apart in location. This corresponds to switching the sign on all sin and cos terms. The two sign changes cancel

out and thus the two evaluation coefficients will be exactly the same. In other words, for all pairs of VAWTs that are of equal

radii, only one set of influence coefficients need be computed. The influence coefficients for the other VAWT can be mapped

over directly. In equation form this is given by25

DxJI((i + n/2) mod n,(j + n/2) mod n)

= DxIJ(i, j), 8 i = 1 . . .n, j = 1 . . .n (if rI = rJ )
(11)

and similarly for Ay . Note that there is no symmetry in the wake terms (Eq. (8)). If a second turbine is in the wake of the first,

the first turbine will clearly not be in the wake of the second turbine.
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✓

⇡ + ✓

Figure 6. The influence coefficient calculations between a pair of VAWTs will always have paired locations that have exactly equal and

opposite distance vectors if the two VAWTs are of equal radius. These two evaluation locations result in the exact same influence coefficients,

reducing the amount of calculations that must be performed.

Finally, we can reduce the number of computations required for VAWTs that have large separation distances. If a VAWT

pair has a large separation distance (e.g.,
p

(xIc�xJc)2 + (yIc� yJc)2 > 10rI ), then when iterating across index i the value

for positions xi and yi will change very little. The computation can be simplified by neglecting these very minor changes and

instead use the distance between VAWT centers (independent of i):

x⇤i ! (xIc�xJc)/rJ

y⇤i ! (yIc� yJc)/rJ

(12)5

With this simplification the matrices in Eqs. (6) and (7) can be computing by iterating only in j and filling an entire column per

iteration. Additionally, for these large separations the wake terms should be negligible and can be skipped in the computation.

2.2 Body Forces

With the induced velocities u⇤ and v⇤, we can compute the body forces produced by the VAWT. The volume forces produced

by the VAWT are modeled as acting along an infinitesimally small radial distance, and in a direction normal to the surface of10

the cylinder (the tangential component is much smaller than the normal force and can be reasonably neglected in the volume

forces of the Euler equations). The radial volume force is

fr(✓) =
F 0

r

rj�✓�r

L

⇢V 21
(13)

where F 0
r is an azimuthal averaged radial force per unit length in a direction pointing into the center of the cylinder, rj is the

radius of the local VAWT cross-section, and rj�✓�r is the in-plane area across which the force acts (Figure 7). The last term15

comes from the normalization of the Euler equations, where L is some relevant length scale.
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x

y

✓j
�r

rj

rj�
✓

Figure 7. In-plane area for volume force at a given azimuthal station.

Because the force acts across an infinitesimal small radial distance, the radial force acts as a pressure jump

q(✓) = lim
✏!0

1
L

rj+✏Z

rj�✏

fr(✓)dr

= lim
✏!0

1
L

rj+✏Z

rj�✏

F 0
r

rj�✓dr

L

⇢V 21
dr

=
F 0

r

rj�✓

1
⇢V 21

(14)

the 1/L is necessary to be consistent with the normalization. It does not matter which reference length is used in normalizing

q(✓) because the length scales cancel.

Figure 8 shows the relative components of velocity in the frame of the airfoil. It consists of contributions from the freestream5

velocity, the velocity due to rotation, and the induced velocities from itself and other turbines.

V j = V1(1 + uj)x̂ + V1vj ŷ�⌦jrj t̂ (15)

Using the following coordinate transformations

x̂ =�cos✓j t̂� sin✓j n̂

ŷ =�sin✓j t̂ + cos✓j n̂
(16)

the velocity can be expressed in the n̂� t̂ plane as10

V j =[�V1(1 + uj)sin✓j + V1vj cos✓j ] n̂

+[�V1(1 + uj)cos✓j �V1vj sin✓j �⌦jrj ] t̂
(17)
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n̂

t̂

x̂

ŷ

V1(1 + uj)

V1vj

✓j

⌦jrj

Figure 8. Relative components of velocity in the frame of the airfoil.

n̂

t̂

x̂

ŷ

✓j

V1(1 + uj) sin ✓j � V1vj cos ✓j

V1(1 + uj) cos ✓j + V1vj sin ✓j + ⌦jrj

Figure 9. Components of velocity resolved into n̂� t̂ plane.
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These velocity components are depicted in Figure 9.

If we define the magnitudes

Vnj ⌘ V1(1 + uj)sin✓�V1vj cos✓

Vtj ⌘ V1(1 + uj)cos✓ + V1vj sin✓ + ⌦jrj

(18)

then

V j =�Vnj n̂�Vtj t̂ (19)5

and the magnitude of the local relative velocity and local inflow angle (Fig. 10) are

Wj =
q

Vn
2
j + Vt

2
j

�j = tan�1

✓
Vnj

Vtj

◆ (20)

The angle of attack, Reynolds number, and lift and drag coefficients can then be estimated as

↵j = �j ��

Rej =
⇢Wjc

µ

clj = f(↵j ,Rej)

cdj = f(↵j ,Rej)

(21)

This can be rotated into normal and tangential force coefficients (note that cn is defined as positive in the opposite direction of10

n̂ in Figure 10).

cnj = clj cos�j + cdj sin�j

ctj = clj sin�j � cdj cos�j

(22)

We can resolve these normal and tangential loads into a radial, tangential, and vertical coordinate system. In doing so, we

will account for blade curvature, as is often used with VAWTs, an example of which is shown in Fig. 11. The total force vector

is resolved as15

F =
1
2
⇢W 2(�cnn̂ + ctt̂)�a (23)

where the negative sign results from the coordinate system definition seen in Fig. 10. From Fig. 11 we see that the area of the

blade element is

�a = c �s = c
�z

cos�
(24)

and the unit vector n̂ can be expressed as20

n̂ = cos�r̂ + sin�ẑ (25)

11
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W

� t̂

n̂

cn

ct

cl

cd

Figure 10. Definition of normal and tangential force coefficients.

Thus, the force vector per unit depth (unit length in the z-direction) is

F 0 =
⇢W 2c

2cos�
(�cn cos� r̂� cn sin� ẑ + ct t̂) (26)

We can simplify these expressions for the three instantaneous force components

R0 =�cn
1
2
⇢W 2c

T 0 = ct
1
2
⇢W 2 c

cos�

Z 0 =�cn
1
2
⇢W 2ctan�

(27)

Note that the radial force is unaffected by blade curvature because although the in-plane normal force varies with the cosine5

of the local curvature angle � (Fig. 11), the area over which the force acts varies inversely with the cosine of the angle. Blade

sweep is also permitted, however it is assumed that the sweep is accomplished through shearing rather than rotation. In other

words, it assumed that the airfoils are still defined relative to the streamwise direction as opposed to normal to the local blade

sweep. Thus, sweeping does not increase the area of the blade element.

For equating with the actuator cylinder theory, only the radial force is of interest (but all components will be of use for10

computing overall power and loads). Because the blades are rotating we need to compute an azimuthally averaged value of the

radial loading (recalling the sign convention for a positive radial loading is inward for loads the fluid produces on the VAWT)

F 0
rj = cnj

1
2
⇢W 2

j c
B�✓

2⇡
(28)

Substituting into Eq. (14) to find that the radial volume force can be expressed as

qj = cnj

1
2
⇢W 2

j c
B�✓

2⇡

1
rj�✓

1
⇢V 21

(29)15

After simplification the radial force is

qj =
Bc

4⇡rj
cnj

✓
Wj

V1

◆2

(30)
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n̂

r̂

ẑ

�
dz

ds =
dz

cos �

Figure 11. Cross-sectional length of blade segment for small changes in height. Blade curvature increases the area of the blade element for

unit height, but sweep has no effect on the blade element area as it is a shearing operation.

Defining solidity as is typically done for a VAWT (� = Bc/r) the normalized radial force per unit length becomes

qj =
1
4⇡

�jcnj

✓
Wj

V1

◆2

(31)

2.3 Correction Factor

Madsen notes that this linear solution produces good trends for the induced velocities, but is off in magnitude. For a uniform

loading across a 2D actuator disk, this linear solution can be shown to produce the following relationship between the thrust5

coefficient and the induction factor (a =�u/V1) (Madsen et al., 2013):

CT linear = 4 alinear (32)

We can equate this thrust coefficient prediction to that of blade element momentum theory in order to produce a correction

factor for alinear. We extend the approach used by Madsen to consider more than just the momentum region. The relationship

between the thrust coefficient and the induction factors varies more generally depending on the induction factor (Wilson and10

Lissaman, 1974; Buhl, 2005)

CT =

8
>>>><
>>>>:

4a(1� a) a 0.4 (momentum)

2
9 (7a2� 2a + 4) 0.4 < a < 1 (empirical)

4a(a� 1) a > 1 (propeller brake)

(33)

In order to get the same induction factor from the linear solution, as would be predicted by blade element momentum theory, we

need to multiply our predicted induced velocities (and thus the thrust coefficient) by the correction factor ka = CT linear/CT
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The correction factors become

ka =

8
>>>><
>>>>:

1/(1� a) (momentum)

(18a)/(7a2� 2a + 4) (empirical)

1/(a� 1) (propeller brake)

(34)

In order to determine the value of a to use in the above equation we first find the thrust coefficient. The instantaneous thrust

coefficient can be found from Eq. (27) using the coordinate system definition that

X 0 =�R0 sin✓�T 0 cos✓

=
1
2
⇢W 2c

✓
cn sin✓� ct

cos✓

cos�

◆ (35)5

The instantaneous thrust coefficient is

CT inst =
X 0

1
2⇢V 21(2r)

=
✓

W

V1

◆2
c

2r

✓
cn sin✓� ct

cos✓

cos�

◆ (36)

where the other normalization dimension comes from the distributed loads, which are a force per unit length in the z-direction.

To get the total thrust coefficient we need to compute the azimuthal average

CT =
B

2⇡

2⇡Z

0

CT inst(✓)d✓

=
�

4⇡

2⇡Z

0

✓
W

V1

◆2 ✓
cn sin✓� ct

cos✓

cos�

◆
d✓

(37)10

From the thrust coefficient we can compute the expected induction factor by reversing Eq. (33)

a =

8
>>>><
>>>>:

1
2

�
1�p1�CT

�
CT  0.96 (momentum)

1
7

⇣
1 + 3

q
7
2CT � 3

⌘
0.96 < CT < 2 (empirical)

1
2

�
1 +

p
1 + CT

�
CT > 2 (propeller brake)

(38)

Finally, this induction factor allows us to compute the correction factor from Eq. (34). These factors should be multiplied

against the induced velocities, but because that is the quantity we need to solve for, we must multiply against their predicted

values.15

Because this correction is derived for an isolated turbine, the correction factors k1 . . .kN should be precomputed for each

individual turbine in isolation rather than as part of the coupled solve of all turbines together.
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2.4 Matrix Assembly and Solution Procedure

From the proceeding discussion it should be noted that computing that loads depends on the induced velocities, but computing

the induced velocities depends on the loads. Thus, an iterative root-finding approach is required. We can assemble the self-

induction and mutual induction effects into one large matrix composed of block matrices. We also need to apply the various

correction factors k for turbine J . To solve all induced velocities as one large system we will concatenate the u and v velocity5

vectors into one vector: w = [u;v]. In the equation below, the symbol � represents an element-by-element multiplication.
2
666666666666666666666664

u1

u2

...

uN

v1

v2

...

vN

3
777777777777777777777775

=

2
666666666666666666666664

k1

k2

...

kN

k1

k2

...

kN

3
777777777777777777777775

�

2
666666666666666666666664

Ax Ax12 . . . Ax1N

Ax21 Ax . . . Ax2N

...
...

. . .
...

AxN1 AxN2 . . . Ax

Ay Ay12 . . . Ay1N

Ay21 Ay . . . Ay2N
...

...
...

...

AyN1 AyN2 . . . Ay

3
777777777777777777777775

2
666664

q1

q2

...

qN

3
777775

(39)

We now have a matrix vector expression of the form: w = Aq, but because q depends on w we must solve for w using a root

finding method. The residual equation is:

f(w) = Aq(w)�w = 0 (40)10

Any good n-dimensional root finder can be used. This paper uses the modified Powell Hybrid method as contained in hybrd.f

of minpack.

2.5 Variations in Height

The actuator cylinder theory computes all loads in 2-dimensional cross-sections. We can either use a representative section to

represent the whole turbine (which is more appropriate for an H-Darrieus geometry, ignoring wind shear), or we can addition-15

ally discretize the turbine along the height and compute loads at each section.

For each azimuthal station of interest, the solution is projected onto the instantaneous locations of the blade discretization as

shown in Fig. 12. For an unswept blade, this involves just a straightforward transfer of forces as the blade discretization would

typically be exactly aligned with the surface discretization. However, for swept blades, interpolation is necessary to resolve

the forces along the curved blade path. Furthermore, for a swept blade, the normal and tangential directions change along the20

blade path. For swept blades, each point along the blade is at some azimuthal offset (�✓) from a reference point (e.g., relative

to the the equatorial blade location), and the total normal force, tangential force, and torque produced by the blade are (again
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Figure 12. Example two-dimensional discretization in height and azimuthal position of swept surface (side-view).

�✓ = 0 for unswept blades)

Rblade(✓) =
Z

[R0(✓ + �✓)cos(�✓)

�T 0(✓ + �✓)sin(�✓)]dz

Tblade(✓) =
Z

[R0(✓ + �✓)sin(�✓)

+ T 0(✓ + �✓)cos(�✓)]dz

Zblade(✓) =
Z

Z 0(✓ + �✓)dz

Qblade(✓) =
Z

rT 0(✓ + �✓)dz

(41)

Now that the forces as a function of ✓ are known for one blade, the forces for all B blades can be found. We let �⇥j

represent the offset of blade j relative to the first blade

�⇥j = 2⇡(j� 1)/B (42)5

The resulting forces in the inertial frame are then

Xall�blades(✓) =
BX

j=1

�Rblade(✓ + �⇥j)sin(✓ + �⇥j)

�Tblade(✓ + �⇥j)cos(✓ + �⇥j)

Yall�blades(✓) =
BX

j=1

Rblade(✓ + �⇥j)cos(✓ + �⇥j)

�Tblade(✓ + �⇥j)sin(✓ + �⇥j)

Zall�blades(✓) =
BX

j=1

Zblade(✓ + �⇥j)

(43)

In this representation the velocities at each height can be different to account for wind shear or other wind distributions.

This derivation is provided for completeness, but because of the increased computational expense, and to be consistent with

the other comparisons we are making in this paper, we will focus on using one 2D slice for the entire turbine.10
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2.6 Power

In addition to the thrust coefficient and instantaneous loads, which have already been defined, we are also interested in com-

puting the power coefficient. This is easily computed from the instantaneous tangential load given in Eq. (27) (or Eq. (43)).

The torque (per unit length) is then

Q = rT 0 (44)5

and the azimuthally-averaged power is

P =
⌦B

2⇡

2⇡Z

0

Q(✓)d✓ (45)

This is a periodic integral and care should be taken in integrating near the boundaries because of the way the discretization is

defined (✓1 does not start at 0). The power coefficient per unit length is then

CP =
P

1
2⇢V 31(2r)

(46)10

2.7 Clockwise Rotation

The following derivation assumed counterclockwise rotation. For clockwise rotation a few minor changes must be made.

Nothing in the influence coefficients needs changing as those are purely based on location. The only change for clockwise

rotation is that the direction of t̂ is reversed, as is the direction of the ⌦r velocity vector in Figs. 8 and 9. The consequence is

that the tangential velocity in Eq. (18) must be redefined as (note the two minus signs)15

Vtj ⌘�V1(1 + uj)cos✓�V1vj sin✓ + ⌦jrj (47)

Additionally, the change in tangential direction affects the computation of the thrust coefficient. In Eq. (35) the sign is

reversed on the second part of the equation. The consequence is that the total thrust coefficient (Eq. (37)) would be computed

as

CT =
�

4⇡

2⇡Z

0

✓
W

V1

◆2 ✓
cn sin✓ + ct

cos✓

cos�

◆
d✓ (48)20

For transferring loads to an inertial frame, or for computing total blade loads with curved blades, a couple more changes are

required. Equation (43) replaces the + sign in front of Tblade with a � sign (for both the X and Y equation) and Eq. (41) is

modified as:

Rblade(✓) =
Z

[R0(✓ + �✓)cos(�✓)

+ T 0(✓ + �✓)sin(�✓)]dz

Tblade(✓) =
Z

[�R0(✓ + �✓)sin(�✓)

+ T 0(✓ + �✓)cos(�✓)]dz

(49)
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3 Power Variations

This methodology was implemented in Julia and for single turbine cases was validated against Madsen’s results (Madsen et al.,

2013). Our focus here is on multiple turbine cases, and for simplicity on two turbine cases. We will focus on a scenario with

two turbines where turbine 1 is fixed, and a downstream turbine 2 is swept in concentric circles ranging from 1.5 diameters

(0.5 radii separation) to 6 diameters between turbine centers (Fig. 13). All turbines are identical, with three NACA 0012 blades5

and a solidity (Bc/r) of 0.25. The tip-speed ratio for all turbines is kept constant at its optimal isolated value of 3.45 (Fig. 14).

Note that the trends reported here can differ significantly at different tip speed ratios, but these conditions are usually of less

interests as the turbines are operating suboptimally.

3DV1
1

2

Figure 13. Turbine 1 (gray) is fixed and turbine 2 (blue) is swept out in circles from 1–6 diameters away. This figures shows a swept circle

with 3 diameter separation.

Figure 14. Power coefficient variation versus tip-speed ratio for one VAWT. The optimal tip-speed ratio for this turbine is 3.46.

There are two cases explored here: two turbines co-rotating and two turbines counter-rotating. The left half of Figure 15

shows contour plots of normalized power for two co-rotating turbines (rotating counterclockwise when viewed from above):10

the upper left plot shows the power of the upstream turbine 1 normalized by the power of turbine 1 in isolation (CP = 0.473),

the middle left plot shows the power of the downstream turbine 2 normalized in the same manner, and the bottom left plot

shows the combined power of the two turbines normalized by their combined power in isolation.
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We see in the top two figures that significant interference occurs between the turbines. Even at 6 diameters spacing, the

power deviates from the isolated power by up to 3%. When turbine 2 is downstream, but outside of the wake, the power of

turbine 1 is less than the isolated power, while the power of turbine 2 is higher than the isolated power.

However, if we look at the combined power produced by turbine 1 and 2 (bottom left of Fig. 15) we note that the positive

and negative interference effectively cancel out. The total power of the two turbines is essentially equal to their total power in5

isolation, except, of course, in the wake region.

Co-rotating Counter-rotating

Turbine 1

Turbine 2

Combined

Figure 15. Power contours for a pair of co- and counter-rotating turbines normalized by the the power of the turbine(s) operating in isolation.

For the combined case the normalization is with respect to the total isolated power of both turbines. Turbine 1 is fixed at (0, 0) and the

downstream turbine 2 is moved. The reported power occurs when turbine 2 is at the given location. Wind direction is from left to right, and

distance is measured between turbine centers.

The same analysis is repeated, but for counter-rotating turbines (right half of Fig. 15). In this case turbine 1 is rotating

counterclockwise, and turbine 2 is rotating clockwise when viewed from above. Note that the differences are subtle for the

individual powers as compared to the co-rotating case, but the combined power of the turbines is notably different. In the
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co-rotating case, the locations of power increase of turbine 2 are highly correlated with locations of power decrease for turbine

1, meaning that they mostly cancel out. However, in the counter-rotating case, the locations of maximum benefit and maximum

detriment occur on opposite sides. The result is that there is a half plane with small power increases, and a half plane with

small power decreases, both with a change in power of about 1% or less at reasonable separation distances.

The configuration with positive interference (as predicted by this method, and at this tip-speed ratio) is the Counter Up case5

shown in Fig. 16. To understand why, one needs to examine the torque distributions and the induced velocity field. The torque

distributions for an isolated clockwise and counterclockwise turbine are shown in Fig. 17.

V1 V1

Counter Up Counter Down

Figure 16. Two cases for a counter rotating pair of turbines. “Counter Up” refers to the pair with a rotation direction facing upstream at their

closest interface, where as the “Counter Down” configuration rotates downstream at their closest interface. Actuator cylinder theory predicts

a positive interference for the Counter Up configuration when operating at the optimal tip-speed ratio.

Figure 17. Torque distribution for a clockwise and counterclockwise rotating turbine (both in isolation).

For a VAWT, whether rotating clockwise or counterclockwise, the azimuthal location of largest power production is at ✓ =

90� (see Fig. 18). The rotation velocity is always in the tangential direction, but at 90� the freestream velocity is perpendicular

to the tangential direction thereby generating the largest force in the tangential direction (and thus the largest torque). To most10
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effectively increase toruqe through mutual induction, the induced velocity should be perpendicular to the direction of the airfoil

motion, in this case in the freestream direction.

The azimuthal location of next largest power production depends on whether the VAWT is rotating clockwise or counter-

clockwise. But in all cases, the most beneficial induced velocities (in terms of producing power) should be perpendicular to the

tangential motion of the airfoil as shown in Fig. 19.5

✓

V

V1

⌦r

F

Figure 18. Location of maximum power generation on a VAWT. V is the total velocity vector, and the generated force F is always perpen-

dicular to V .

ccw cw

Figure 19. Location of second highest power production depending on whether turbine is rotating clockwise or counter-clockwise. The blue

arrow indicates the direction of induced velocity that would created the largest torque (and thus power).

The streamlines for the induced velocity field of the isolated VAWT and the total velocity field (with freestream added) are

shown in Fig. 20. This velocity field is not an artifact of removing the nonlinear terms in the Euler equations. The streamlines

for a solution of an actuator cylinder based on the full Euler equations yields essentially the same induced and total velocity

fields (see Figs. 10 and 11 on pg. 66 of (Madsen, 1982)), as does an unsteady panel simulation of a VAWT (see Figs. 3.7 and

3.8 in (Ferreira, 2009)).10

From this induced velocity field we can understand why the power production changes as observed in the previous contour

plots. On the upwind half of the domain there is an induced velocity in the upstream direction. This reduces the effective angle

of attack at the location of maximum power production (Fig. 18), and thus reduces the produced power. For the secondary

peak locations (Fig. 19) we see that the best configuration will place the clockwise rotating turbine above the counterclockwise
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rotating turbine so as to create an induced velocity field that is mutually beneficial. The Counter Up configuration (Fig. 16)

is indeed the one that is observed to be mutually beneficial in these simulation. Figure 21 shows the torque distribution for

the counterclockwise turbine both isolated and in a paired Counter Up configuration (Fig. 16). The power increase on the

downstream half is larger than the power decrease on the upstream half leading to an overall power increase. Conversely, the

Counter Down configuration experiences a decrease in power on both the upwind an downwind portions of the VAWT. Note5

that this case focuses on turbines operating near their optimal tip-speed ratio, but the relative benefits and interference change

with different tip-speed ratio.

Figure 20. Streamlines for an isolated turbine. The left figure shows the induced velocity only, while the right figure includes the freestream.

Figure 21. A counterclockwise turbine operating in isolation and in a co-rotating pair according ot Fig. 16.

Results of higher fidelity simulations and experiments of counter-rotating turbines show mixed results. An unsteady RANS

simulation of two VAWTs in the Counter Down configuration, rotating out of phase, shows a small decrease in power (Ko-

robenko et al., 2013), consistent with that observed here. However, another unsteady RANS simulation shows positive benefits10
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for both co-rotating and counter-rotating pairs of turbines (Bremseth and Duraisamy, 2016) (although it should be noted that

their reported power coefficients are unrealistically high, even for the isolated turbine). The difference is that their simulations

predict an positive (downwind) induced velocity on the upper half of the turbines, opposite to that observed in the previously

mentioned studies. In that case the upwind half of the turbine experiences an increase in power. Using this actuator cylinder

theory, but forcing the induced velocity on the upwind half of the turbine to be in the positive downwind direction, we also5

observe positive interference for co-rotating and both counter-rotating configurations consistent with these published results.

We can also compare these results to experimental data. An experimental database of VAWT arrays arranged in different

configurations was collected over an approximately two year period by The Caltech Field Laboratory for Optimized Wind

Energy1. From this dataset we extract three cases: an isolated turbine, a Counter Up pair, and a Counter Down pair (Fig. 16).

The full wind farm dataset is filtered so that only configurations with one pair in the first row of an array are considered to10

eliminate wake effects and side array effects, only inflow angles within 10� of a perpendicular inflow angle are used, and only

freestream velocities within half a standard deviation of the optimal tip-speed ratio for that turbine (�⇤ = 2.3) are used to best

match the conditions of our simulations (standard deviations in wind speed are contained in the experimental data).

A box plot of the power coefficients for the three configurations are shown in Fig. 22. On average the Counter Down

configuration shows a benefit over the isolated turbine, whereas the Counter Up configuration shows a decrease in power.15

However, the variation in the data is large enough that the differences are not statistically significant.

Figure 22. Boxplot comparing the power coefficient of three configurations. The red center line denotes the median, and the top and bottom

of the box denote the 25% and 75% quartiles. The whiskers extend to show the range of the data with the + symbols indicating outliers.

1http://flowe.caltech.edu
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4 Conclusions

Actuator cylinder theory is a fast and effective analysis method to predict aerodynamic loads and power of vertical axis wind

turbines. In this paper we derive an extension to actuator cylinder theory for multiple interacting turbines. Additional extensions

were provided that apply to both the single turbine and multiple turbine cases: thrust coefficients outside of the momentum

regions, and curved or swept blades. Analysis of pairs of turbines found that for co-rotating turbines the increases and decreases5

in power production mostly cancelled out, whereas for counter-rotating pairs positive or negative power benefits were observed.

Analysis with multiple turbines highlighted the need for model improvements in the wake region and in the induced velocity

fields. First, an improved wake model is necessary because the wakes in actuator cylinder theory are inviscid, do not decay,

and do not spread. Our recent work has developed the first VAWT wake model derived from computational fluid dynamics

simulations that is parametrized for turbines with different tip-speed ratios and solidities (Tingey and Ning, 2016). Models like10

this could be combined with actuator cylinder theory to better predict turbine-wake interactions.

Second, the induced velocity field predicted in this method, while consistent with other published inviscid induced velocity

fields, may not be accurate as compared to real turbulent, viscous flow. We observed that conclusions on increases or decreases

in power from counter-rotating turbines are sensitive to the accuracy of this induced velocity field and that mixed scenarios

have been reported in the literature. These induced velocities may depend on the relative phase of the rotating turbines.15

The potential benefits of mutual induction from close spacing are much less important than the wake effect. In previous

published studies the power increase from mutual induction is on the order of a few percent. However, all of these studies,

both numerical and experimental (Bremseth and Duraisamy, 2016; Korobenko et al., 2013; Araya et al., 2014), either use

a freestream wind from a single direction or a site with a highly directional wind rose. For sites with larger variations in

wind directions (which is most sites), any beneficial effects from close placement would be negated by wake effects when20

considering the expected value of the power across the full wind rose. Our past research in HAWT wind farm optimization

suggests that when optimizing turbine positioning, under uncertainty of wind direction, optimal configurations are spread out

and not in aligned rows (Fleming et al., 2016; Gebraad et al., 2015). For VAWTs, a tighter spacing may be possible than for

HAWTs, as VAWTs tend towards lower optimal tip-speed ratios which produces shorter wakes. However, a tighter spacing

does not necessarily mean better performance than a HAWT farm. Power density is generally a poor metric for comparing25

performance, and future studies with a cost of energy analysis are needed to draw conclusions on optimal configurations and

spacings of VAWT wind farms.

If the mutual induction is augmented with a separate model, or is deemed less important because of a fuller wind rose, than

the single actuator cylinder theory with a separate wake model is likely the best approach for speed and accuracy. Regardless,

of which approach is used, the extensions shown in this paper for regions outside of the momentum region and for curved and30

swept blades are useful in all cases. All code developed for this analysis has been made open source and is freely available

online2.

2http://flow.byu.edu/publications/
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